
CS 4530: Fundamentals of Software Engineering
Lesson 1.2 General Program Design Principles

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Outline of this lesson
1. The purposes of the principles
2. Difficulties the principles should help with
3. Five general-purpose principles

• usable for all programming, not just object-oriented

In the next lesson, we'll present five more principles
that are specific to object-oriented programming

2

Learning Objectives for this Lesson
• By the end of this lesson you should be able to:

• Describe the purpose of our design principles
• List 5 general design principles and illustrate their

expression in code
• Identify some violations of the principles and suggest

ways to mitigate them

3

The Challenge: Controlling Complexity
• Software systems must be comprehensible by

humans
• Why? Software needs to be maintainable

• continuously adapted to a changing environment
• Maintenance takes 50–80% of the cost

• Why? Software needs to be reusable
• Economics: cheaper to reuse than rewrite!

4

The biggest obstacle: coupling
• Two pieces of code are coupled if a change in one

demands a change in the other.
• A coupling represents an agreement between the two

pieces of code.
• They may agree on:

• names
• order (e.g. of arguments)
• meaning (e.g. meaning of data)
• algorithms

• The more two pieces of code are coupled, the harder
they are to understand and modify: you have to
understand both to understand either of them.

5

There's a fancy
word for this:
connascence
(meaning "born
together")

More coupling means
less readability, less
modifiability

Five general-purpose principles

6

Five General Principles
1. Use Good Names
2. Make Your Data Mean Something
3. One Method/One Job
4. Don't Repeat Yourself
5. Don't Hardcode Things That Are
Likely To Change

Principle 1. Use Good Names
• The name of a thing is a first clue to the reader

about what the thing means.
• often, it's the only clue 

• Use good names for
• constants
• variables
• functions/methods
• data types

7

Good Names for Variables and Types

8

var temp : Temperature
var loc : SensorLocation

var t : number
var l : number

var temp : number
var loc : number

Good Names for Functions and Methods

9

function checkLine () : boolean

function LineIsTooLong () : boolean

Good Names for Functions and Methods
• Use noun-like names for functions or methods that

return values, e.g.

• not:

• Reserve verb-like names for functions or methods
that perform actions, like

10

let c = new Circle(initRadius)
let a = c.diameter()

let a = c.calculateDiameter()

table1.addItem(student1,grade1)

Principle 2. Make Your Data Mean
Something
• You need to do three things:

1. Decide what part of the information in the
"real world" needs to be represented as data

2. Decide how that information needs to be
represented as data

3. Document how to interpret the data in your
computer as information about the real world

11

Example 1:
• Right now I am wearing a red shirt, and I've decided

I need to represent that fact in my program.
• How should I represent that in my program?
• We need to decide:

• how to represent shirts (including their color)
• how to represent colors
• how to represent my shirt

12

Example 1 (cont'd)
• So we need to write something like this:

13

type Shirt {
color : Color // the color of the shirt

}

type Color { ... }

const myShirt: Shirt // my shirt

The Big Picture

• How do we know that these are connected?
• Answer: we have to write down the interpretation
• In our Typescript infrastructure, we do that with the

comments.

14

My shirt is
red

representation

interpretation

type Color { ... }
type Shirt {

// the color of the shirt
color : Color

}
const myShirt: Shirt // my shirt
myShirt.color = Color.red

Example 2: What does an object represent?
• What does an object of class Car represent?

• a model of car (e.g. Dodge, Ford, Toyota)?
• a particular car (my 2019 Toyota, VIN = 456789)?

• What does an object of class Wheel represent?
• a model of tire? (Goodyear GoodGrips14)
• a particular tire? (Goodyear GoodGrips14 SN = 345678)

• What does "has" represent?
• depends on what Car and Wheel represent
• this may affect the navigability of the association

• (can you get from a car object to the associated wheels? Can
you get from a wheel to the car that it’s on?)

15

Principle 3: One Method/One Job
• Each class, and each method of that class, should

have one job, and only one job
• If your method has more than one job, split it into 2

methods. Why?
• You might want one part but not the other
• It's easier to test a method that has only one job

• You call both of them if you need to.
• or write a single method that calls them both

• Same thing for classes.

16

Principle 4: Don't Repeat Yourself
• If you have some quantity that you use more than

once, give it a name and use the name.
• That way you only need to change it in one place!
• And of course you should use a good name
• If you have some task that you do in many places,

make it into a procedure.
• If the tasks are slightly different, turn the

differences into parameters.

17

A real example

18

function testequal <T> (testname: string, actualVal: T, correctVal: T) {
it(testname,

function () { expect(actualVal).toBe(correctVal) })
}

describe('tests for countOfLocalMorks', function () {
testequal('empty crew',countOfLocalMorks(ship1),0)
testequal('just Mork',countOfLocalMorks(ship2),1)
testequal('just Mindy',countOfLocalMorks(ship3),0)
testequal('two Morks',countOfLocalMorks(ship4),2)
testequal('drone has no Morks',countOfLocalMorks(drone1),0)

})

Principle 5:
Don't Hardcode Things That Are Likely To Change
• "No magic numbers" and "Don't Repeat Yourself"

are already examples of this.
• General strategy: If there something that might

change, give it a name
• if it's not already a "thing", refactor to make it a "thing“

• Let’s look at a couple of examples.

19

• Replace magic numbers with good names

Replace magic numbers with good names

20

const salesTaxRate = 1.06
let salesPrice = netPrice * salesTaxRate

let salesprice = netPrice * 1.06

But use good names!

21

int ONE_HUNDRED = 100;
int a[ONE_HUNDRED]; …

int a[100]; for (int i = 0; i <= 99; i++) a[i] = 0;

int ARRAYSIZE = 100;
int a[ARRAYSIZE]; for (int i = 0; i <= ARRAYSIZE-1; i++) a[i] = 0;

Example
• Imagine we are computing income tax in a state

where there are four rates:
• One on incomes less than $10,000
• One on incomes between $10,000 and $20,000
• One on incomes between $20,000 and $50,000
• One on incomes greater than $50,000

• You might write something like

22

You might write something like

• What might change?
• The boundaries of the tax brackets might change
• The number of brackets might change

23

function grossTax(income: number): number {
if ((0 <= income) && (income <= 10000)) { return 0 }
else if ((10000 < income) && (income <= 20000))
{ return 0.10 * (income - 10000) }
else if ((20000 < income) && (income <= 50000))
{ return 1000 + 0.20 * (income - 20000) }
else { return 7000 + 0.25 * (income - 50000) }

}

So let's represent our data
differently

24

// defines the tax bracket for income lower < income <= upper.
// if upper is null, then lower < income (no upper bound)
type TaxBracket = {

lower: number,
upper: number | null,
base : number
rate : number

}

let brackets : TaxBracket[] = [
{lower:0, upper:10000, base:0, rate:0},
{lower:10000, upper:20000, base:0, rate:0.10},
{lower:20000, upper:50000, base:1000, rate:0.20},
{lower:50000, upper: null, base:7000, rate:0.25}

]

And now it's easy to rewrite our function

25

// defines the incomes covered by a bracket
function isInBracket(income:number, bracket:TaxBracket) : boolean {

if (bracket.upper == null)
{ return (bracket.lower <= income) }
else
{ return ((bracket.lower <= income) && (income < bracket.upper))}

}

function taxByBracket(income:number,bracket:TaxBracket) : number {
return bracket.base + bracket.rate * (income - bracket.lower)

}

function grossTax2 (income:number, brackets: TaxBracket[]) : number {
return taxByBracket(income,income2bracket(income,brackets))

}

Review: Learning Objectives for this Lesson
• You should now be able to:

• Describe the purpose of our design principles
• List 5 general design principles and illustrate their

expression in code
• Identify some violations of the principles and suggest

ways to mitigate them

26

Next...
• In our next lesson, we'll learn about five more basic

principles that are specific to an object-oriented
setting.

27

	CS 4530: Fundamentals of Software Engineering�Lesson 1.2 General Program Design Principles
	Outline of this lesson
	Learning Objectives for this Lesson
	The Challenge: Controlling Complexity
	The biggest obstacle: coupling
	Five general-purpose principles
	Principle 1. Use Good Names
	Good Names for Variables and Types
	Good Names for Functions and Methods
	Good Names for Functions and Methods
	Principle 2. Make Your Data Mean Something
	Example 1:
	Example 1 (cont'd)
	The Big Picture
	Example 2: What does an object represent?
	Principle 3: One Method/One Job
	Principle 4: Don't Repeat Yourself
	A real example
	Principle 5:�Don't Hardcode Things That Are Likely To Change
	Replace magic numbers with good names
	But use good names!
	Example
	You might write something like
	So let's represent our data differently
	And now it's easy to rewrite our function
	Review: Learning Objectives for this Lesson
	Next...

